Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 754
Filtrar
1.
Trials ; 25(1): 227, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561815

RESUMO

INTRODUCTION: The lack of safe, effective, and simple short-course regimens (SCRs) for multidrug-resistant/rifampicin-resistant tuberculosis (MDR/RR-TB) treatment has significantly impeded TB control efforts in China. METHODS: This phase 4, randomized, open-label, controlled, non-inferiority trial aims to assess the efficacy and safety of a 9-month all-oral SCR containing bedaquiline (BDQ) versus an all-oral SCR without BDQ for adult MDR-TB patients (18-65 years) in China. The trial design mainly mirrors that of the "Evaluation of a Standardized Treatment Regimen of Anti-Tuberculosis Drugs for Patients with MDR-TB" (STREAM) stage 2 study, while also incorporating programmatic data from South Africa and the 2019 consensus recommendations of Chinese MDR/RR-TB treatment experts. Experimental arm participants will receive a modified STREAM regimen C that replaces three group C drugs, ethambutol (EMB), pyrazinamide (PZA), and prothionamide (PTO), with two group B drugs, linezolid (LZD) and cycloserine (CS), while omitting high-dose isoniazid (INH) for confirmed INH-resistant cases. BDQ duration will be extended from 6 to 9 months for participants with Mycobacterium tuberculosis-positive sputum cultures at week 16. The control arm will receive a modified STREAM regimen B without high-dose INH and injectable kanamycin (KM) that incorporates experimental arm LZD and CS dosages, treatment durations, and administration methods. LZD (600 mg) will be given daily for ≥ 24 weeks as guided by observed benefits and harm. The primary outcome measures the proportion of participants with favorable treatment outcomes at treatment completion (week 40), while the same measurement taken at 48 weeks post-treatment completion is the secondary outcome. Assuming an α = 0.025 significance level (one-sided test), 80% power, 15% non-inferiority margin, and 10% lost to follow-up rate, each arm requires 106 participants (212 total) to demonstrate non-inferiority. DISCUSSION: PROSPECT aims to assess the safety and efficacy of a BDQ-containing SCR MDR-TB treatment at seventeen sites across China, while also providing high-quality data to guide SCRs administration under the direction of the China National Tuberculosis Program for MDR-TB. Additionally, PROSPECT will explore the potential benefits of extending the administration of the 9-month BDQ-containing SCR for participants without sputum conversion by week 16. TRIAL REGISTRATION: ClinicalTrials.gov NCT05306223. Prospectively registered on 16 March 2022 at https://clinicaltrials.gov/ct2/show/NCT05306223?term=NCT05306223&draw=1&rank=1 {2}.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Adulto , Humanos , Antituberculosos , Ensaios Clínicos Fase IV como Assunto , Diarilquinolinas/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
2.
Genome Med ; 16(1): 39, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481348

RESUMO

In the accompanying study, Nimmo and colleagues estimated the dates of emergence of mutations in mmpR5 (Rv0678), the most important resistance gene to the anti-tuberculosis drug bedaquiline, in over 3500 geographically diverse Mycobacterium tuberculosis genomes. This provided important insights to improve the design and analysis of clinical trials, as well as the World Health Organization catalogue of resistance mutations, the global reference for interpreting genotypic antimicrobial susceptibility testing results.


Assuntos
Diarilquinolinas , Mycobacterium tuberculosis , Humanos , Diarilquinolinas/farmacologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética , Mutação
3.
Antimicrob Agents Chemother ; 68(4): e0127523, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470194

RESUMO

Multidrug-resistant tuberculosis (MDR-TB) patients not cured at the time of stopping treatment are exposed to Minimum Inhibitory Concentration (MIC) and sub-MIC levels for many months after discontinuing bedaquiline (BDQ) or clofazimine (CFZ) treatment. In vitro cultures treated with BDQ and CFZ sub-MIC concentrations clearly showed enrichment in the Rv0678 mutant population, demonstrating that pre-existing Rv0678 mutants can be selected by sub-MIC concentrations of BDQ and CFZ if not protected by an alternative MDR-TB treatment.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Clofazimina/farmacologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Testes de Sensibilidade Microbiana
4.
J Med Chem ; 67(4): 2264-2286, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38351709

RESUMO

Delamanid, bedaquiline, and pretomanid have been recently added in the anti-tuberculosis (anti-TB) treatment regimens and have emerged as potential solutions for combating drug-resistant TB. These drugs have proven to be effective in treating drug-resistant TB when used in combination. However, concerns have been raised about the eventual loss of these drugs due to evolving resistance mechanisms and certain adverse effects such as prolonged QT period, gastrointestinal problems, hepatotoxicity, and renal disorders. This Perspective emphasizes the properties of these first-in-class drugs, including their mechanism of action, pharmacokinetics/pharmacodynamics profiles, clinical studies, adverse events, and underlying resistance mechanisms. A brief coverage of efforts toward the generation of best-in-class leads in each class is also provided. The ongoing clinical trials of new combinations of these drugs are discussed, thus providing a better insight into the use of these drugs while designing an effective treatment regimen for resistant TB cases.


Assuntos
Diarilquinolinas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Mycobacterium tuberculosis , Nitroimidazóis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/efeitos adversos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Oxazóis/farmacologia , Oxazóis/uso terapêutico , Resistência a Medicamentos
5.
CPT Pharmacometrics Syst Pharmacol ; 13(4): 673-685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38404200

RESUMO

Tuberculosis (TB) is a life-threatening infectious disease. The standard treatment is up to 90% effective; however, it requires the administration of four antibiotics (isoniazid, rifampicin, pyrazinamide, and ethambutol [HRZE]) over long time periods. This harsh treatment process causes adherence issues for patients because of the long treatment times and a myriad of adverse effects. Therefore, the World Health Organization has focused goals of shortening standard treatment regimens for TB in their End TB Strategy efforts, which aim to reduce TB-related deaths by 95% by 2035. For this purpose, many novel and promising combination antibiotics are being explored that have recently been discovered, such as the bedaquiline, pretomanid, and linezolid (BPaL) regimen. As a result, testing the number of possible combinations with all possible novel regimens is beyond the limit of experimental resources. In this study, we present a unique framework that uses a primate granuloma modeling approach to screen many combination regimens that are currently under clinical and experimental exploration and assesses their efficacies to inform future studies. We tested well-studied regimens such as HRZE and BPaL to evaluate the validity and accuracy of our framework. We also simulated additional promising combination regimens that have not been sufficiently studied clinically or experimentally, and we provide a pipeline for regimen ranking based on their efficacies in granulomas. Furthermore, we showed a correlation between simulation rankings and new marmoset data rankings, providing evidence for the credibility of our framework. This framework can be adapted to any TB regimen and can rank any number of single or combination regimens.


Assuntos
Diarilquinolinas , Nitroimidazóis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Humanos , Antituberculosos/uso terapêutico , Linezolida/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
6.
Genome Med ; 16(1): 34, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374151

RESUMO

BACKGROUND: Drug resistance in tuberculosis (TB) poses a major ongoing challenge to public health. The recent inclusion of bedaquiline into TB drug regimens has improved treatment outcomes, but this advance is threatened by the emergence of strains of Mycobacterium tuberculosis (Mtb) resistant to bedaquiline. Clinical bedaquiline resistance is most frequently conferred by off-target resistance-associated variants (RAVs) in the mmpR5 gene (Rv0678), the regulator of an efflux pump, which can also confer cross-resistance to clofazimine, another TB drug. METHODS: We compiled a dataset of 3682 Mtb genomes, including 180 carrying variants in mmpR5, and its immediate background (i.e. mmpR5 promoter and adjacent mmpL5 gene), that have been associated to borderline (henceforth intermediate) or confirmed resistance to bedaquiline. We characterised the occurrence of all nonsynonymous mutations in mmpR5 in this dataset and estimated, using time-resolved phylogenetic methods, the age of their emergence. RESULTS: We identified eight cases where RAVs were present in the genomes of strains collected prior to the use of bedaquiline in TB treatment regimes. Phylogenetic reconstruction points to multiple emergence events and circulation of RAVs in mmpR5, some estimated to predate the introduction of bedaquiline. However, epistatic interactions can complicate bedaquiline drug-susceptibility prediction from genetic sequence data. Indeed, in one clade, Ile67fs (a RAV when considered in isolation) was estimated to have emerged prior to the antibiotic era, together with a resistance reverting mmpL5 mutation. CONCLUSIONS: The presence of a pre-existing reservoir of Mtb strains carrying bedaquiline RAVs prior to its clinical use augments the need for rapid drug susceptibility testing and individualised regimen selection to safeguard the use of bedaquiline in TB care and control.


Assuntos
Diarilquinolinas , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Clofazimina , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Testes de Sensibilidade Microbiana , Filogenia , Tuberculose/tratamento farmacológico
7.
Microbiol Spectr ; 12(3): e0374923, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38345388

RESUMO

Collecting data on rare Mycobacterium tuberculosis (Mtb) clinical isolates with resistance to the new anti-tuberculosis drug bedaquiline is an important task for improving antimicrobial susceptibility testing methods. Nanopore whole genome sequencing, the proportion method on Middlebrook 7H11 medium, and BACTEC MGIT 960 assays were used to analyze genotypic and phenotypic resistance to bedaquiline. We found four mutations: atpE I66M, atpE А63Р, Rv0678 А36Т, and Rv0678 S53P in five isolates with different levels of phenotypic bedaquiline resistance. IMPORTANCE: Bedaquiline (BDQ) is a new anti-tuberculosis drug. The phenotypic and genotypic data describing the mechanism of drug resistance are critical for the design of rapid and accurate diagnostic tests. We consider that our work, which describes genotypic and phenotypic resistance to BDQ, can contribute to the standardization of drug susceptibility testing.


Assuntos
Diarilquinolinas , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Federação Russa , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
8.
Emerg Infect Dis ; 30(3): 568-571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407158

RESUMO

Bedaquiline is currently a key drug for treating multidrug-resistant or rifampin-resistant tuberculosis. We report and discuss the unusual development of resistance to bedaquiline in a teenager in Namibia, despite an optimal background regimen and adherence. The report highlights the risk for bedaquiline resistance development and the need for rapid drug-resistance testing.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Adolescente , Humanos , Namíbia/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Resultado do Tratamento , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico
9.
Antimicrob Agents Chemother ; 68(4): e0156223, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38376228

RESUMO

The combination of bedaquiline, pretomanid, and linezolid (BPaL) has become a preferred regimen for treating multidrug- and extensively drug-resistant tuberculosis (TB). However, treatment-limiting toxicities of linezolid and reports of emerging bedaquiline and pretomanid resistance necessitate efforts to develop new short-course oral regimens. We recently found that the addition of GSK2556286 increases the bactericidal and sterilizing activity of BPa-containing regimens in a well-established BALB/c mouse model of tuberculosis. Here, we used this model to evaluate the potential of new regimens combining bedaquiline or the more potent diarylquinoline TBAJ-587 with GSK2556286 and the DprE1 inhibitor TBA-7371, all of which are currently in early-phase clinical trials. We found the combination of bedaquiline, GSK2556286, and TBA-7371 to be more active than the first-line regimen and nearly as effective as BPaL in terms of bactericidal and sterilizing activity. In addition, we found that GSK2556286 and TBA-7371 were as effective as pretomanid and the novel oxazolidinone TBI-223 when either drug pair was combined with TBAJ-587 and that the addition of GSK2556286 increased the bactericidal activity of the TBAJ-587, pretomanid, and TBI-223 combination. We conclude that GSK2556286 and TBA-7371 have the potential to replace pretomanid, an oxazolidinone, or both components, in combination with bedaquiline or TBAJ-587.


Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Oxazolidinonas , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Camundongos , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Linezolida/farmacologia , Linezolida/uso terapêutico , Tuberculose/tratamento farmacológico , Nitroimidazóis/farmacologia , Oxazolidinonas/farmacologia , Oxazolidinonas/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
10.
Int J Pharm ; 653: 123920, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38387819

RESUMO

Tuberculosis (TB) is caused by Mycobacterium tuberculosis (M.tb) and is the second leading cause of death from an infectious disease globally. The disease mainly affects the lungs and forms granulomatous lesions that encapsulate the bacteria, making treating TB challenging. The current treatment includes oral administration of bedaquiline (BDQ) and pretomanid (PTD); however, patients suffer from severe systemic toxicities, low lung drug concentration, and non-adherence. In this study, we developed BDQ-PTD loaded nanoparticles as inhalable dry powders for pulmonary TB treatment using a Quality-by-Design (QbD) approach. The BDQ-PTD combination showed an additive/synergistic effect for M.tb inhibition in vitro, and the optimized drug ratio (1:4) was successfully loaded into polymeric nanoparticles (PLGA NPs). The QbD approach was implemented by identifying the quality target product profile (QTPPs), critical quality attributes (CQAs), and critical process parameters (CPPs) to develop efficient design space for dry powder preparation using spray drying. The three-factorial and three-level Box-Behnken Design was used to assess the effect of process parameters (CPPs) on product quality (CQAs). The Design of Experiments (DoE) analysis showed different regression models for product quality responses and helped optimize process parameters to meet QTPPs. The optimized dry powder showed excellent yield (72 ± 2 % w/w), high drug (BDQ-PTD) loading, low moisture content (<1% w/w), and spherical morphology. Further, aerosolization performance revealed the suitability of powder for deposition in the respiratory airways of the lungs (MMAD 2.4 µm and FPF > 75 %). In conclusion, the QbD approach helped optimize process parameters and develop dry powder with a suitable quality profile for inhalation delivery in TB patients.


Assuntos
Diarilquinolinas , Nanopartículas , Nitroimidazóis , Tuberculose , Humanos , Pós , Aerossóis e Gotículas Respiratórios , Administração por Inalação , Inaladores de Pó Seco , Tamanho da Partícula , Aerossóis
11.
J Biol Chem ; 300(2): 105618, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176652

RESUMO

The F1FO-ATP synthase engine is essential for viability and growth of nontuberculous mycobacteria (NTM) by providing the biological energy ATP and keeping ATP homeostasis under hypoxic stress conditions. Here, we report the discovery of the diarylquinoline TBAJ-5307 as a broad spectrum anti-NTM inhibitor, targeting the FO domain of the engine and preventing rotation and proton translocation. TBAJ-5307 is active at low nanomolar concentrations against fast- and slow-growing NTM as well as clinical isolates by depleting intrabacterial ATP. As demonstrated for the fast grower Mycobacterium abscessus, the compound is potent in vitro and in vivo, without inducing toxicity. Combining TBAJ-5307 with anti-NTM antibiotics or the oral tebipenem-avibactam pair showed attractive potentiation. Furthermore, the TBAJ-5307-tebipenem-avibactam cocktail kills the pathogen, suggesting a novel oral combination for the treatment of NTM lung infections.


Assuntos
Antibacterianos , Diarilquinolinas , Inibidores Enzimáticos , Infecções por Mycobacterium não Tuberculosas , Micobactérias não Tuberculosas , Humanos , Trifosfato de Adenosina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos , Carbapenêmicos , Inibidores Enzimáticos/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Diarilquinolinas/farmacologia
12.
Lancet Microbe ; 5(2): e164-e172, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38215766

RESUMO

BACKGROUND: Clinical bedaquiline resistance predominantly involves mutations in mmpR5 (Rv0678). However, mmpR5 resistance-associated variants (RAVs) have a variable relationship with phenotypic Mycobacterium tuberculosis resistance. We did a systematic review to assess the maximal sensitivity of sequencing bedaquiline resistance-associated genes and evaluate the association between RAVs and phenotypic resistance, using traditional and machine-based learning techniques. METHODS: We screened public databases for articles published from database inception until Oct 31, 2022. Eligible studies performed sequencing of at least mmpR5 and atpE on clinically sourced M tuberculosis isolates and measured bedaquiline minimum inhibitory concentrations (MICs). A bias risk scoring tool was used to identify bias. Individual genetic mutations and corresponding MICs were aggregated, and odds ratios calculated to determine association of mutations with resistance. Machine-based learning methods were used to define test characteristics of parsimonious sets of diagnostic RAVs, and mmpR5 mutations were mapped to the protein structure to highlight mechanisms of resistance. This study was registered in the PROSPERO database (CRD42022346547). FINDINGS: 18 eligible studies were identified, comprising 975 M tuberculosis isolates containing at least one potential RAV (mutation in mmpR5, atpE, atpB, or pepQ), with 201 (20·6%) showing phenotypic bedaquiline resistance. 84 (29·5%) of 285 resistant isolates had no candidate gene mutation. Sensitivity and positive predictive value of taking an any mutation approach was 69% and 14%, respectively. 13 mutations, all in mmpR5, had a significant association with a resistant MIC (adjusted p<0·05). Gradient-boosted machine classifier models for predicting intermediate or resistant and resistant phenotypes both had receiver operator characteristic c statistic of 0·73 (95% CI 0·70-0·76). Frameshift mutations clustered in the α1 helix DNA-binding domain, and substitutions in the α2 and α3 helix hinge region and in the α4 helix-binding domain. INTERPRETATION: Sequencing candidate genes is insufficiently sensitive to diagnose clinical bedaquiline resistance, but where identified, some mutations should be assumed to be associated with resistance. Genomic tools are most likely to be effective in combination with rapid phenotypic diagnostics. This study was limited by selective sampling in contributing studies and only considering single genetic loci as causative of resistance. FUNDING: Francis Crick Institute and National Institute of Allergy and Infectious Diseases at the National Institutes of Health.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Estados Unidos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Tuberculose/tratamento farmacológico , Mycobacterium tuberculosis/genética , Genômica
13.
Int J Infect Dis ; 140: 62-69, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176643

RESUMO

OBJECTIVES: This study aimed to investigate the association between drug exposure and adverse events (AEs) during the standardized multidrug-resistant tuberculosis (MDR-TB) treatment, as well as to identify predictive drug exposure thresholds. METHODS: We conducted a prospective, observational multicenter study among participants receiving standardized MDR-TB treatment between 2016 and 2019 in China. AEs were monitored throughout the treatment and their relationships to drug exposure (e.g., the area under the drug concentration-time curve from 0 to 24 h, AUC0-24 h) were analyzed. The thresholds of pharmacokinetic predictors of observed AEs were identified by boosted classification and regression tree (CART) and further evaluated by external validation. RESULTS: Of 197 study participants, 124 (62.9%) had at least one AE, and 15 (7.6%) experienced serious AEs. The association between drug exposure and AEs was observed including bedaquiline, its metabolite M2, moxifloxacin and QTcF prolongation (QTcF >450 ms), linezolid and mitochondrial toxicity, cycloserine and psychiatric AEs. The CART-derived thresholds of AUC0-24 h predictive of the respective AEs were 3.2 mg·h/l (bedaquiline M2); 49.3 mg·h/l (moxifloxacin); 119.3 mg·h/l (linezolid); 718.7 mg·h/l (cycloserine). CONCLUSIONS: This study demonstrated the drug exposure thresholds predictive of AEs for key drugs against MDR-TB treatment. Using the derived thresholds will provide the knowledge base for further randomized clinical trials of dose adjustment to minimize the risk of AEs.


Assuntos
Antituberculosos , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/efeitos adversos , Antituberculosos/farmacocinética , Ciclosserina/efeitos adversos , Diarilquinolinas/uso terapêutico , Linezolida/efeitos adversos , Moxifloxacina/uso terapêutico , Estudos Prospectivos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
14.
Indian J Tuberc ; 71(1): 79-88, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38296395

RESUMO

Multi and extensively drug-resistant tuberculosis is a grave cause of global public health concern due to its high mortality and limited treatment options. We conducted this systemic review and meta-analysis to evaluate the efficacy and safety of bedaquiline and delamanid, which have been added to the WHO-recommended regimen for treating drug-resistant tuberculosis. Electronic databases were searched from their inception until December 1st, 2021, for eligible studies assessing the efficacy and safety of bedaquiline and delamanid for treating drug-resistant tuberculosis. Binary outcomes were pooled using a DerSimonian-Laird random-effects model and arcsine transformation and reported on a log scale with a 95% confidence interval (CIs). Twenty-one studies were shortlisted in which bedaquiline, delamanid, and a combination of both were administered in 2477, 937, and 169 patients. Pooled culture conversion at 6 months was 0.801 (p < 0.001), 0.849 (p = 0.059) for bedaquiline and delamanid, respectively, and 0.823 (p = 0.017), concomitantly. In the bedaquiline cohort, the pooled proportion of all-cause mortality at 6 months was reported as 0.074 (p < 0.001), 0.031 (p = 0.372) in the delamanid cohort, and 0.172 in the combined cohort. The incidence of adverse events in the bedaquiline cohort ranged from 11.1% to 95.2%, from 13.2% to 86.2% in the delamanid cohort, and 92.5% in a study in the combined cohort. The incidence of QTC prolongation reported in each cohort is as follows: bedaquiline 0.163 (p < 0.001), delamanid 0.344 (p = 0.272) and combined 0.340 (p < 0.001). Our review establishes the efficacy of delamanid, bedaquiline, and their combined use in treating drug-resistant tuberculosis with reasonable rates of culture conversion, low mortality rates, and safety of co-administration, as seen with their effect on the QTc interval.


Assuntos
Antituberculosos , Nitroimidazóis , Oxazóis , Tuberculose Resistente a Múltiplos Medicamentos , Adulto , Humanos , Antituberculosos/efeitos adversos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Diarilquinolinas/efeitos adversos , Resultado do Tratamento
15.
Trials ; 25(1): 70, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243296

RESUMO

BACKGROUND: Delamanid and bedaquiline are two of the most recently developed antituberculosis (TB) drugs that have been extensively studied in patients with multidrug-resistant TB. There is currently a need for more potent, less-toxic drugs with novel mechanisms of action that can be used in combination with these newer agents to shorten the duration of treatment as well as prevent the development of drug resistance. Quabodepistat (QBS) is a newly discovered inhibitor of decaprenylphosphoryl-ß-D-ribose-2'-oxidase, an essential enzyme for Mycobacterium tuberculosis to synthesize key components of its cell wall. The objective of this study is to evaluate the safety, efficacy, and appropriate dosing of a 4-month regimen of QBS in combination with delamanid and bedaquiline in participants with drug-susceptible pulmonary TB in comparison with the 6-month standard treatment (i.e., rifampicin, isoniazid, ethambutol, and pyrazinamide). METHODS: This phase 2b/c, open-label, randomized, parallel group, dose-finding trial will enroll approximately 120 participants (including no more than 15% with human immunodeficiency virus [HIV] coinfection) aged ≥ 18 to ≤ 65 years at screening with newly diagnosed pulmonary drug-sensitive TB from ~8 sites in South Africa. Following a screening period of up to 14 days, eligible participants will be randomized in a ratio of 1:2:2:1 to one of four arms. Randomization will be stratified by HIV status and the presence of bilateral cavitation on a screening chest x-ray. After the end of the treatment period, participants will be followed until 12 months post randomization. The primary efficacy endpoint is the proportion of participants achieving sputum culture conversion in Mycobacteria Growth Indicator Tube by the end of the treatment period. The safety endpoints consist of adverse events, clinical laboratory tests, vital signs, physical examination findings, and electrocardiographic changes. DISCUSSION: QBS's potent bactericidal activity and distinct mechanism of action (compared with other TB drugs currently available for human use) may make it an ideal candidate for inclusion in a novel treatment regimen to improve efficacy and potentially prevent resistance to concomitant TB drugs. This trial will assess the effectiveness, safety, and dosing of a new, shorter, QBS-based, combination anti-TB treatment regimen. TRIAL STATUS: ClinicalTrials.gov NCT05221502. Registered on February 3, 2022.


Assuntos
Diarilquinolinas , Infecções por HIV , Nitroimidazóis , Oxazóis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Humanos , Antituberculosos , Ensaios Clínicos Fase II como Assunto , Quimioterapia Combinada , Infecções por HIV/tratamento farmacológico , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
16.
Br J Clin Pharmacol ; 90(2): 463-474, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37817504

RESUMO

AIMS: Bedaquiline, pretomanid and linezolid (BPaL) combination treatment against Mycobacterium tuberculosis is promising, yet safety and adherence concerns exist that motivate exploration of alternative dosing regimens. We developed a mechanistic modelling framework to compare the efficacy of the current and alternative BPaL treatment strategies. METHODS: Pharmacodynamic models for each drug in the BPaL combination treatment were developed using in vitro time-kill data. These models were combined with pharmacokinetic models, incorporating body weight, lesion volume, site-of-action distribution, bacterial susceptibility and pharmacodynamic interactions to assemble the framework. The model was qualified by comparing the simulations against the observed clinical data. Simulations were performed evaluating bedaquiline and linezolid approved (bedaquiline 400 mg once daily [QD] for 14 days followed by 200 mg three times a week, linezolid 1200 mg QD) and alternative dosing regimens (bedaquiline 200 mg QD, linezolid 600 mg QD). RESULTS: The framework adequately described the observed antibacterial activity data in patients following monotherapy for each drug and approved BPaL dosing. The simulations suggested a minor difference in median time to colony forming unit (CFU)-clearance state with the bedaquiline alternative compared to the approved dosing and the linezolid alternative compared to the approved dosing. Median time to non-replicating-clearance state was predicted to be 15 days from the CFU-clearance state. CONCLUSIONS: The model-based simulations suggested that comparable efficacy can be achieved using alternative bedaquiline and linezolid dosing, which may improve safety and adherence in drug-resistant tuberculosis patients. The framework can be utilized to evaluate treatment optimization approaches, including dosing regimen and duration of treatment predictions to eradicate both replicating- and non-replicating bacteria from lung and lesions.


Assuntos
Antituberculosos , Nitroimidazóis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Linezolida/efeitos adversos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Diarilquinolinas/efeitos adversos
18.
Lancet Infect Dis ; 24(3): 297-307, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37956677

RESUMO

BACKGROUND: In 2021, an estimated 4800 people developed rifampicin-resistant tuberculosis in Mozambique, 75% of which went undiagnosed. Detailed molecular data on rifampicin-resistant and multidrug-resistant (MDR) tuberculosis are not available. Here, we aimed at gaining precise data on the determinants of rifampicin-resistant and MDR tuberculosis in Mozambique. METHODS: In this retrospective observational study, we performed whole-genome sequencing of 704 rifampicin-resistant Mycobacterium tuberculosis complex (Mtbc) strains submitted to the National Tuberculosis Reference Laboratory (NTRL) in Maputo, Mozambique, between 2015 and 2021. Phylogenetic strain classification, genomic resistance prediction, and cluster analysis were performed. FINDINGS: Between Jan 1, 2015, and July 31, 2021, 2606 Mtbc isolates with an isoniazid or rifampicin resistance were identified in the NTRL biobank, of which, 1483 (56·9%) were from men, 1114 (42·7%) from women, and nine (0·4%) were unknown. Genome-based drug-resistant prediction classified 704 Mtbc strains as rifampicin resistant. 628 (89%) of the 704 Mtbc strains were classified MDR; of those, 146 (23%) were pre-extensively drug resistant (pre-XDR; additional fluoroquinolone resistance), and 24 (4%) extensively drug resistant (XDR; combined fluoroquinolone and bedaquiline resistance). Overall, 61 (9%) of 704 strains revealed resistance to bedaquiline: five (7%) of 76 rifampicin resistant plus bedaquiline resistant, 32 (7%) of 458 MDR plus bedaquiline resistant, and 24 (100%) of 24 XDR. Prevalence of bedaquiline resistance increased from 3% in 2016 to 14% in 2021. The cluster rate (12 single-nucleotide polymorphism threshold) was 42% for rifampicin-resistant strains, 78% for MDR strains, 94% for pre-XDR strains, and 96% for XDR Mtbc strains. 31 (4%) of 704 Mtbc strains, belonging to a diagnostic escape outbreak strain previously described in Eswatini (group_56), had an rpoB Ile491Phe mutation which is not detected by Xpert MTB/RIF (no other rpoB mutation). Of these, 23 (74%) showed additional resistance to bedaquiline, 13 (42%) had bedaquiline and fluoroquinolone resistance, and two (6%) were bedaquiline, fluoroquinolone, and delamanid resistant. INTERPRETATION: Pre-XDR resistance is highly prevalent among MDR Mtbc strains in Mozambique and so is bedaquiline resistance; and the frequency of bedaquiline resistance quadrupled over time and was found even in Mtbc strains without fluoroquinolone resistance. Importantly, strains with Ile491Phe mutation were frequent, accounting for 31% (n=10) of MDR plus bedaquiline-resistant strains and 54% (n=13) of XDR Mtbc strains. Given the current diagnostic algorithms and treatment regimens, both the emergence of rifampicin resistance due to Ile491Phe and bedaquiline resistance might jeopardise MDR tuberculosis prevention and care unless sequencing-based technology is rolled out. The potential cross border spread of diagnostic escape strains needs further investigation. FUNDING: The German Ministry of Health through the Seq_MDRTB-Net project, the Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy Precision Medicine in Inflammation and the Research Training Group 2501 TransEvo, the Leibniz Science Campus Evolutionary Medicine of the Lung, and the German Ministry of Education and Research via the German Center for Infection Research.


Assuntos
Diarilquinolinas , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Masculino , Feminino , Humanos , Mycobacterium tuberculosis/genética , Rifampina/uso terapêutico , Tuberculose/tratamento farmacológico , Moçambique/epidemiologia , Filogenia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Mutação , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Testes de Sensibilidade Microbiana
20.
Biochem Biophys Res Commun ; 690: 149249, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000294

RESUMO

The anti-tuberculosis therapeutic bedaquiline (BDQ) is used against Mycobacterium abscessus. In M. abscessus BDQ is only bacteriostatic and less potent compared to M. tuberculosis or M. smegmatis. Here we demonstrate its reduced ATP synthesis inhibition against M. abscessus inside-out vesicles, including the F1FO-ATP synthase. Molecular dynamics simulations and binding free energy calculations highlight the differences in drug-binding of the M. abscessus and M. smegmatis FO-domain at the lagging site, where the drug deploys its mechanistic action, inhibiting ATP synthesis. These data pave the way for improved anti-M. abscessus BDQ analogs.


Assuntos
Mycobacterium abscessus , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , Diarilquinolinas/metabolismo , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico Sintase/metabolismo , Trifosfato de Adenosina/metabolismo , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...